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Abstract 

 
The field of facial expression recognition (FER) has been actively researched to improve 
human-computer interaction. In recent years, deep learning techniques have gained popularity 
for addressing FER, with numerous studies proposing end-to-end frameworks that stack or 
widen significant convolutional neural network layers. While this has led to improved 
performance, it has also resulted in larger model sizes and longer inference times. To overcome 
this challenge, our work introduces a novel lightweight model architecture. The architecture 
incorporates three key factors: Depth-wise Separable Convolution, Residual Block, and 
Attention Modules. By doing so, we aim to strike a balance between model size, inference 
speed, and accuracy in FER tasks. Through extensive experimentation on popular benchmark 
FER datasets, our proposed method has demonstrated promising results. Notably, it stands out 
due to its substantial reduction in parameter count and faster inference time, while maintaining 
accuracy levels comparable to other lightweight models discussed in the existing literature. 
 
 
Keywords: Attention, Depth-wise separable convolution, Facial expression recognition, 
Lightweight deep learning model, Residual block. 
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 1. Introduction  

Facial expression is a fundamental way for humans to convey emotions without verbal 
communication. In 1992, Ekman defined seven universal emotions [1], including Anger, 
Disgust, Fear, Happiness, Neutral, Sadness, and Surprise which have been widely adopted by 
researchers (as shown in Fig. 1). The area of Facial Expression Recognition (FER) has 
garnered significant attention in recent decades, as it plays a crucial role in enabling computers 
to interact with humans in a more natural and intuitive manner. FER applications can include 
customer service, smart education, and satisfaction assessment of subjects in public services. 
In customer service, FER helps to improve the ability to interact and respond to customers in 
a better way, improve the service experience and create higher satisfaction. In smart education, 
FER can help teachers and managers understand the level of participation and interaction of 
students, thereby creating the best conditions to enhance the learning process and meet the 
needs of each student. FER can also be applied in satisfaction assessment of citizens in public 
services, such as customer service, health services or public services. By understanding the 
emotions of users, agencies and organizations can adjust and improve services to better meet 
the needs and desires of users. Fig. 2 showcases a sample of our own ongoing FER system, 
elucidating the general process of a FER system. Taking image or video data as input, the first 
task of the complete FER system is to detect faces in the image/video. Then, it classifies the 
extracted face into one of the 7 basic emotions. It's crucial to underline that this paper 
exclusively focuses on the classification phase. This indicates that our input data has 
undergone preprocessing to incorporate the extracted facial visuals. 
 

 
Fig. 1. Seven basic emotions in FER-Plus dataset [2]. 

Recently, deep learning techniques have been the primary method employed in the 
extensive research on Facial Expression Recognition [3]. The majority of these approaches 
rely heavily on convolutional operators to extract key visual features from input images. With 
numerous studies proposing end-to-end frameworks that stack or widen significant 
convolutional neural network layers, deep learning methods have become highly effective in 
analyzing and interpreting visual data. However, this has also led to larger model sizes and 
longer inference times. Recent advancements in lightweight models, such as MobileNets [4], 
have highlighted the potential of depth-wise separable convolution. This approach not only 
preserves the intrinsic space of the image but also reduces the considerable number of 
learnable parameters, allowing for real-time processing on mobile devices. The use of depth-
wise separable convolution dates back to 2013 when Laurent Sifre developed it during his 
internship at Google Brain. Initially incorporated in AlexNet [5], this results in slight 
improvements in accuracy, significant enhancements in convergence speed, and notable 
reductions in model size. Following its success in AlexNet, depth-wise separable convolution 
was adopted as the initial layer in Inception model [6]. Andrew Howard, while at Google, 
further explored the potential of depth-wise separable convolution by developing efficient 
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mobile models called MobileNets [4]. Finally, in 2017, F. Chollet presented Xception [7], a 
specialized model aimed at reducing the computational cost and overall size of convolutional 
neural networks by leveraging the benefits of separable convolutions. 

 

 
Fig. 2. An example of a facial expression recognition system that automatically detects faces in an 

image and recognizes the expressed emotion. 

There's a recognition that constructing a lightweight model can yield substantial advantages, 
including the potential for deployment on resource-constrained devices and the reduction of 
both time and storage space overhead. As a result, our central research revolves around 
devising a lightweight deep learning model with a minimal parameter count, rapid training and 
inference times, all while maintaining the ability to effectively recognize facial expressions. 
We named our proposal method FGW-FER. It leverages three factors: Depth-wise Separable 
Convolution, Residual Block, Spatial and channel-wise attention modules. This distinguishes 
our approach from prior studies that often rely on a single factor or a combination of two of 
these factors. Depth-wise separable convolution layers are employed to reduce the model size 
and inference time, addressing the computational constraints. Residual blocks are integrated 
to mitigate the vanishing gradient problem that arises in deep models, thereby improving 
training efficiency. Additionally, we acknowledge that not all regions of a facial image 
contribute equally to the recognition of specific emotions. In many cases, only specific facial 
regions are crucial for understanding the underlying emotion. To address this, we incorporate 
an attention mechanism inspired by CBAM [8], which applies spatial and channel-wise 
attention to focus on the important regions of the face for learning. Moreover, it is important 
to note that we do not entirely replace all traditional convolution layers with depth-wise 
separable convolution layers; instead, we intermix both types to harness their respective 
benefits. 

To gauge the efficacy of our method, we perform experiments on benchmark FER datasets, 
including FER2013 [9], CK+ [10], FER-Plus [2], and RAF-DB [11]; and compared the results 
with closely related works. The proposal method effectively enhances both the training and 
inference speed, while also achieving a significant reduction in the number of parameters and 
overall model size. Remarkably, despite these improvements, our model maintains a level of 
accuracy that is comparable to other lightweight models discussed in the existing literature. 
This highlights the capability of our approach to strike a balance between speed, model size, 
and accuracy, making it a promising solution for FER tasks. 
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The structure of the upcoming paper is outlined as follows: Section 2 will present an 
extensive review of relevant literature for our research. Section 3 will elaborate on our 
proposed FGW-FER architecture, while Section 4 will provide an overview of our 
experimental setups. In Section 5, the results obtained from our experiments will be presented 
and discussed. The paper will conclude with Section 6. 

2. Related Works 

2.1 Traditional Deep learning methods for FER 
The impressive accomplishments of convolutional neural networks (CNN) or deep 
convolutional neural networks (DCNN) [12] in tasks such as image classification [13] have 
further expanded to encompass facial expression recognition as well. The concept of 
convolutional neural networks was initially introduced in the late 1980s, as they are 
particularly well-suited for processing matrix-shaped data like images or vectors. A typical 
architecture of a DCNN model comprises multiple convolutional layers, pooling layers, and 
fully connected layers. Over the years, numerous new DCNN architectures have been 
developed and refined, some of which have been applied to address facial expression 
recognition challenges. For instance, the traditional CNN model developed by Khorrami et al. 
in 2015 [14] achieved a high level of accuracy in emotion recognition. By utilizing zero-bias 
parameters, it attained a remarkable 95.1% accuracy on the Cohn-Kanade dataset (CK+) and 
88.6% accuracy on the Toronto Face Dataset (TFD). Additionally, several other variations 
have made significant contributions to facial expression recognition. Examples include well-
known models like AlexNet [5], VGGNet [15], Inception [6] [16], Residual Neural Network 
(ResNet) [13], and 2-Channel CNN [17]. The 2-Channel CNN architecture incorporates a 
standard CNN network in one channel while training a Convolutional Autoencoder in the other 
channel. Another noteworthy approach, as proposed in [18], involves training different facial 
parts in each channel.  

There were also works that combine automatic features learned by deep learning models 
and hand-crafted features to solve FER. For example, in [19] they used three versions of VGG 
network (fine tunes VGG-Face and VGG-f, train from scratch VGG-13) for deep features and 
SIFT algorithm for handcrafted features. As a result, they achieved an exceptional 
performance that surpassed the previous approaches by more than 1%.  

However, as previously mentioned, these models tend to be computationally demanding 
and resource-intensive, which presents obstacles when it comes to deploying them on devices 
with constrained computational capabilities, such as mobile phones or embedded systems. 
Therefore, there is a growing need for lightweight models for FER that are more efficient in 
terms of computational requirements and model size. 

2.2 Attention mechanisms for FER methods 
In recent years, the attention mechanism has gained considerable attention as a research topic 
due to its strong interpretability. It has become increasingly popular in both natural language 
processing and computer vision, with a diverse range of mechanisms and implementations. 
The attention mechanisms can be classified into two main types: one that focuses on enhancing 
the most important aspects of the data and another that utilizes the relationships between those 
aspects to produce a more meaningful representation.  

In the context of facial expression recognition, Hu et al. proposed the SE-Net [20], which 
has a module that focuses on important features and has become a key module in the Efficient-
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Net [21]. Woo et al. proposed the CBAM [8], which has two sub-modules Channel and Spatial 
Attention Modules to refine high-level feature maps and can be integrated into any CNN 
models without impacting their size and speed significantly. In 2020, W. Cao et al. [22]  
combined the VGG network with CBAM to achieve a recognition accuracy of 92% on the 
CK+ dataset. Pecoraro et al. proposed a Local Multi-Head Channel Self-Attention (LHC) [23] 
that uses channel-wise attention and global attention to overcome the limitations of 
convolution. The LHC achieved SOTA performance of 74.42% on the FER2013 dataset. 

2.3 Lightweight models for FER 
Lightweight models for FER typically involve reducing the number of layers and parameters 
in the model architecture while maintaining a good level of accuracy in recognizing facial 
expressions. These models can be developed using various techniques, such as pruning and 
quantization [24], knowledge distillation [25], or designing custom model architectures that 
are specifically optimized for the FER task. Pruning removes redundant weights that have 
minimal impact on the model's behavior, thus significantly reducing its size. On the other hand, 
quantization is a method that reduces computations by decreasing the precision of the datatype 
used for weights, biases, and activations. In contrast, knowledge distillation, introduced in 
2015 [26], is a technique that transfers knowledge from a large, complex model (known as a 
teacher model) to a smaller model (referred to as a student model). 

In the last-aforementioned category, a recent study in 2021 [27] introduces a lightweight 
attention-based DCNN called LA-Net for facial expression recognition (FER). LA-Net 
incorporates squeeze-and-excitation (SE) modules and network slimming techniques to 
effectively reduce the model's size and computational demands. The SE modules play a crucial 
role by assigning weights to feature channels, enabling the network to concentrate on learning 
important facial features while filtering out redundant information. Additionally, network 
slimming contributes to further minimizing the model's size with minimal impact on accuracy. 
Subsequently, in 2022, there was a particular interest in compact network models, with several 
proposed models of this type published. [28] proposed a combination of Depth-wise Separable 
Convolutions, residual blocks, and Squeeze-and-Excitation Block, achieving accuracies of 
66.29% on the FER2013 dataset with a model containing only 54,900 parameters. J. Zhi et al. 
[29] proposed a combination of the ResNet18 model with CBAM and frame-level attention 
mechanism to address facial expression recognition in image sequences (video-based FER). 
This proposed model had 13.39 million parameters and achieved recognition accuracies of 
89.52% on the CK+ dataset and 88.33% on the eNTERFACE'05 dataset. Also in the same year, 
Y. Nan et al. [30] proposed a combination of Depth-wise Separable Convolutions and CBAM 
with a model containing 3.4 million parameters, resulting in recognition accuracies of 88.11% 
on the FER-Plus dataset and 84.49% on the RAF-DB dataset. 

Compared to prior studies, our approach involves directly designing a lightweight model 
architecture for the Facial Expression Recognition (FER) task. Drawing inspiration from 
popular models such as MobileNets [4],  ResNet [13], and Convolutional Block Attention 
Module (CBAM) [8], our model incorporates three key factors: depth-wise separable 
convolution modules, residual blocks, and Channel and Spatial attention modules. This sets 
our approach apart from many previous works that typically utilize only one or a combination 
of two of these factors (e.g., [22]  uses only attention modules, [29] omits the use of depth-
wise separation convolution, and [34] neglects residual blocks). Furthermore, our approach 
does not replace all traditional convolution blocks with depth-wise separable convolution. 
Instead, we carefully interleave both types of convolutions in the proposed architecture. This 
design choice aims to strike a balance between speed, model size, and accuracy, ensuring that 
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our model achieves proper performance for the FER task. 

3. Materials and Methods 

3.1 Architecture of the proposal FGW-FER model 
Taking inspiration from the aforementioned deep learning models, we introduce a lightweight 
model that can maintain high performance on benchmark datasets. The proposed model 
comprises of an expansion part, Depth-wise part, and a classifier part. In addition, it utilizes 
regularization techniques, such as Batch Normalization and Dropout to enhance the learning 
efficiency of the model. Further details of each part are outlined below (Fig. 3). 

 
Fig. 3. Architecture of the proposal FGW-FER method. 

• The first part is the expansion part, consisting of two traditional convolution layers with 
eight 3x3 filters and a stride of 1. This part extracts features from input images and passes 
them through Channel and Spatial modules to obtain a better representation of feature 
maps. 

• The second part is the Depth-wise part that includes four blocks. Each block consists of 
two different branches: projection skip connection in the first branch and Depth-wise 
Separable Convolution layers performed in the second branch. The first branch contains 
[16, 32, 64, 128] traditional convolution 3x3 filters with a stride of 1 and a max-pooling 
layer. The second branch contains [16, 32, 64, 128] Depth-wise Separable Convolution 
filters with a stride of 2, and then passed through Channel and Spatial modules to obtain 
a set of feature maps. After processing the two branches, an additional operation is 
performed between their respective outputs. This addition merges the information from 
both branches, combining their feature maps. Furthermore, the output of the previous 
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block serves as the input to the subsequent block. This sequential flow allows for the 
propagation of features and information through the network, contributing to the overall 
learning process. 

• The third part is the classifier part, which includes 3 layers: Convolution, Global Average 
Pooling 2D, Softmax to synthesize the information learned from the previous section and 
make predictions based on the probability of each label. Instead of using Fully Connection 
classes, this block uses Global Average Pooling 2D to reduce the parameters and number 
of calculations that the model has to perform. 

Finally, in our proposed method, a cross-entropy loss function is used when adjusting 
model weights during training. It encourages the model to assign high probabilities to the true 
class and low probabilities to other classes. By minimizing the cross-entropy loss function, the 
model learns to predict the correct class with high probability. It is defined as: 

     (1) 

, where 𝑡𝑡𝑖𝑖 is the truth label and 𝑝𝑝𝑖𝑖 is the Softmax probability for the 𝑖𝑖𝑡𝑡ℎ class. 
The subsequent sections will detail the core layers of our proposed network. 

3.2 Depth-wise Separable Convolution 
Depth-wise Separable Convolution is a type of convolutional neural network layer that 
decomposes a standard convolution into two distinct layers: depth-wise convolution and 
pointwise convolution (Fig. 4). The depth-wise convolution performs a spatial convolution 
separately on each input channel using a relatively small kernel size, usually 3x3. This 
produces a set of output feature maps with the same channel count as the input. On the other 
hand, the pointwise convolution, also known as a 1x1 convolution, then applies a linear 
combination of these output feature maps across all channels to produce the final output. This 
combination effectively enhances the dimensionality of the output feature map while 
introducing non-linearity to the network. 

Mathematically, let's consider an input tensor characterized by its dimensions (H× W× C). 
Here, H denotes the height, W signifies the width, and C represents the number of input 
channels. The depth-wise separable convolution consists of the following two steps. 

 
Fig. 4. Depth-wise Separable Convolution decomposes a standard convolution into two parts: depth-

wise convolution and pointwise convolution. 
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Depth-wise convolution: In depth-wise convolution, instead of using a single filter that 
traverses all channels of the input as in a standard convolution, a separate filter is used for each 
channel of the input. This implies that for an input with C channels, we will have C depth-wise 
filters. This convolution gathers spatial features independently within each channel. Given an 
input tensor X of size (H× W× C) and a depth-wise filter F of size (𝑓𝑓𝐻𝐻×𝑓𝑓𝑊𝑊×C). For each 
channel c in the C input channels, the depth-wise convolution is applied as follows: 

      (2) 
Here, * denotes the convolution operation, and 𝑌𝑌𝑐𝑐  is the corresponding output for channel c. 
The output tensor Y has dimensions (H' × W' × C), where H' and W' depend on the stride, 
padding size, and filter size. In the project, a filter size of (3 × 3), a filter stride of 1, and 
padding size of 1 are applied. This generates an output tensor Y with dimensions (H × W × C), 
matching the size of the input tensor. 

Pointwise convolution: Pointwise convolution, also known as (1×1) convolution, is 
performed after depth-wise convolution. It applies a set of (1×1) filters to the depth-wise 
outputs across channels to produce the final result. Pointwise convolution helps to combine 
and linearly transform the features learned from depth-wise convolution. 
Given an input Y that is the output from the depth-wise convolution, with dimensions 
(H×W×C), and a pointwise filter P with dimensions (1×1×C×K) – where the final size K 
represents the number of filters – pointwise convolution is applied as follows: 

      (3) 
Here, * represents the convolution operation, and Z is the final output tensor. The resulting 
tensor Z has dimensions equal to that of Y, which is (H×W×C). 

In summary, a depth-wise separable convolution involves 2 steps: 
1. Firstly, applying depth-wise convolution to each individual input channel. 
2. Then, stacking these outputs from depth-wise convolution and applying pointwise 

convolution. 
For the same input size, a standard convolution would require 𝑓𝑓𝐻𝐻×𝑓𝑓𝑊𝑊×(C× K) parameters, 
while depth-wise separable convolution has a parameter count of 𝑓𝑓𝐻𝐻×𝑓𝑓𝑊𝑊×(C + K), where 
(𝑓𝑓𝐻𝐻×𝑓𝑓𝑊𝑊) is the size of the filters, C is the number of channels, and K is the number of filters. 
Thus, it can be said that depth-wise separable convolution uses fewer parameters and 
computations compared to standard convolution, making it an efficient alternative. 

3.3 Residual Block with Projection Skip Connection 
Residual blocks are the key components of ResNet, a deep neural network architecture that 
emerged victorious in the 2015 ImageNet Large Scale Visual Recognition Challenge [13]. A 
residual block consists of two main components: a main branch, which applies a series of 
convolutional layers and nonlinear activation functions to the input, and a shortcut connection, 
which passes the input through an identity mapping. The output of the main branch and the 
shortcut connection are then added, producing the final output of the block. However, to handle 
scenarios where the dimensions of the identity mapping and the stacked layers may differ, a 
linear projection can be performed. This projection involves using a convolutional neural 
network (CNN) to transform the identity function and align its dimensions with those of the 
stacked layers. By applying this linear projection, the dimensions can be matched, ensuring 
compatibility between the identity mapping and the subsequent layers (Fig. 5) 

Mathematically, the residual block with a projection skip connection utilized in the 
proposed method can be represented as follows: 
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      (4) 
In this equation, x represents the input to the block, y represents the output of the block, F 
denotes the transformation carried out by the main branch, H represents the projection skip 
connection, and the '+' symbol signifies element-wise addition. 
The inclusion of a skip connection between the input and output in the residual block enables 
the network to learn the residual mapping, which represents the difference between the input 
and output of the block. This relationship can be expressed as: 

      (5) 
By focusing on learning the residual mapping rather than the complete mapping, the network 
can converge more efficiently and achieve improved performance, particularly in deeper 
networks. Furthermore, the skip connection addresses the issue of vanishing gradients by 
facilitating the direct flow of gradients from the output to the input of the block. 

 
Fig. 5. Residual Block with Normal skip connection in (a) and Projection skip connection in (b). 

3.4 Channel and Spatial Attention Modules  
In this study, we will leverage the power of attention mechanisms to improve the performance 
of our model. Specifically, we will utilize two types of attention modules: the Channel 
Attention Module (CAM) and the Spatial Attention Module (SAM). These modules, inspired 
by the pioneering work in [8], have shown promising results in various computer vision tasks. 
In Fig. 6, we provide a visual representation of how the CAM and SAM modules are applied 
within our network architecture. This visualization highlights the sequential nature of these 
attention mechanisms and their impact on the feature maps.  

 
Fig. 6. The detailed structure of channel and spatial attention modules. 
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Let's first define the input feature of size (H× W× C), where H and W are the height and 
width of the map, and C represents the number of channels. The two attention modules 
mathematically operate as follows. 

The Channel Attention Module (CAM) aims to capture the interdependencies between 
channels and to learn a weighting coefficient for each channel that represents its importance 
in the feature map. It firstly computes the channel attention weights 𝑀𝑀𝐶𝐶  ∈  ℝ𝐶𝐶𝐶𝐶1𝑥𝑥1 as follows:  

    (6) 

where MLP is a shared network with ReLU activations that operate on the global average 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 
and maximum pooled feature maps 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  respectively, and 𝜎𝜎  is the sigmoid activation 
function. It should be noted that the MLP (Multi-Layer Perceptron) consists of a multi-layer 
perceptron with a single hidden layer. To minimize the parameter overhead, the size of the 

hidden activation is set to ℝ
𝐶𝐶
𝑟𝑟𝑥𝑥1𝑥𝑥1, where r represents the reduction ratio. As a result, the 

expression for 𝑀𝑀𝐶𝐶 can be reformulated in the following manner: 
    (7) 

where 𝑊𝑊0 ∈  ℝ
𝐶𝐶
𝑟𝑟𝑥𝑥𝑥𝑥 and 𝑊𝑊1 ∈  ℝ𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟 

Finally, the channel attention is applied to the input feature map X to achieve the channel-
refined feature 𝑋𝑋𝐶𝐶: 

       (8) 
where ⊗ represents the element-wise multiplication operator. 

The Spatial Attention Module (SAM) aims to capture the spatial interdependencies 
between different regions of the feature map and to learn a weighting coefficient for each 
spatial location. Mathematically, firstly the input feature map 𝑋𝑋𝐶𝐶  is concatenated with 1x1 
convolution layers: 

      (9) 

where [. ; .] denotes the concatenation operation, 𝑀𝑀𝑀𝑀𝑀𝑀 is a two fully connected layer with 
ReLU activations that operate on the concatenation of the spatial average and maximum 
pooled feature maps, respectively. The output is fed through a sigmoid activation function 𝜎𝜎 
resulting in the spatial attention mask 𝑀𝑀𝑆𝑆 ∈  ℝ1𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥. 
The final output denoted as Y, is the element-wise multiplication between the channel-wise 
and spatial attention maps: 

              (10) 
To summarize, by sequentially incorporating the CAM and SAM modules within our model, 

we can effectively refine feature maps from both the channel and spatial dimensions. This 
enables the model to focus on informative channels and relevant spatial regions, leading to 
improved discrimination and spatial awareness. 

4. Experimental Setup 
In this section, we delve into the details of our experimental setups. To start, we provide a 
succinct overview of the datasets employed in this study, highlighting their key characteristics 
and relevant details. Moving forward, we present the experimental configuration and 
parameter settings that were applied in our experiments. Lastly, we elaborate on the evaluation 
metrics that were utilized to assess the performance of our model, ensuring a comprehensive 
analysis of its effectiveness. 
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4.1 Datasets 
In this work, an overview of datasets will be presented, including the extended Cohn-Kanade 
(CK+), FER2013, FER Plus, and RAF. 

CK+: The extended Cohn-Kanade (known as CK+) [10] serves as a public dataset for both 
action units and emotion recognition. This dataset encompasses a variety of expressions, 
including both posed and non-posed (spontaneous) ones. In total, CK+ consists of 593 
sequences involving 123 subjects. Previous studies have commonly used the last frame of 
these sequences for image-based facial expression recognition. Our experiments focus on 
seven specific expressions: Anger, Disgust, Fear, Happiness, Sadness, Surprise, and Contempt. 
Notably, the distribution of classes in CK+ exhibits slight variations (as depicted in Fig. 7). 

 

       

       

Anger Disgust Fear Happiness Neutral Sadness Surprise 

Fig. 7. Distribution classes and sample images in CK+ [10]. 

FER2013: The dataset was initially presented in the ICML 2013 Challenges in 
Representation Learning [9] to enable facial expression recognition. The dataset comprises 
35,887 images with a resolution of 48x48, mostly captured in uncontrolled environments. The 
dataset is partitioned into three parts: a training set consisting of 28,709 images, a public test 
set of 3,589 images, and a private test set comprising 3,589 images. FER exhibits more 
variability in its images compared to other datasets, with examples of low-contrast images, 
partial faces, face occlusion, eyeglasses, and some images even lacking faces altogether. Fig. 
8 showcases a few examples from the FER2013 dataset. In addition, the distribution between 
the number of classes is a huge difference. The label imbalance leads the model to only 
converge on the majority of data and ignore the rest. This is also the problem that the FER2013 
dataset is not easy to achieve high results. 
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Anger Disgust Fear Happiness Sadness Surprise Neutral 
 

Non-face images in FER2013 

       

Anger Disgust Fear Happiness Sadness Surprise Neutral 
Fig. 8. Distribution classes and sample images in FER2013 [9]. This imbalance dataset includes 

several images without human faces, yet they are still labeled. 

FER-Plus: is an extension of FER2013 dataset introduced by [2], comprises the same 
35,483 grayscale images with a 48x48-pixel resolution as FER2013. Unlike FER2013, FER-
Plus offers more comprehensive and accurate emotion labels. One notable distinction is that 
FER-Plus encompasses eight expression categories, including the addition of a contempt 
expression. However, it should be noted that the number of contempt expressions in the dataset 
is limited. To ensure consistency with other datasets, only the degree of presence for the seven 
basic emotions—anger, disgust, fear, happiness, sadness, surprise, and neutral—is included 
for each image. Each image is annotated by ten human labelers, and their annotations are 
aggregated using a probability distribution to generate the final labels. Fig. 9 illustrates sample 
images from the FER-Plus dataset and their respective class distributions. 
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Anger Disgust Fear Happiness Sadness Surprise Neutral 

Fig. 9. Distribution classes and sample images in FER-Plus [2]. 

RAF-DB: a real-world emotional faces database [11] containing 29,672 RGB images of 
faces with a resolution of 100 x 100 pixels. The dataset is divided into two subsets: a single-
label subset encompassing seven fundamental emotions, and a two-label subset comprising 
twelve types of emotions. For our study, we focused on the single-label subset, which includes 
12,271 training images and 3068 test images. It's worth mentioning that the contempt 
expression is not included in the RAF-DB dataset. The images in RAF-DB exhibit varying 
sizes, ranging from small to large, which poses a challenge for deep learning models. Sample 
images from the RAF-DB dataset are displayed in Fig. 10. 

 

       

       

Anger Disgust Fear Happiness Sadness Surprise Neutral 
 

Fig. 10. Distribution classes and sample images in RAF-DB [11]. 
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4.2 Experimental configuration and parameter settings 
The experimental results in this study were conducted using a specific set of hardware and 
software specifications. The GPU used was an NVIDIA GTX 3060 with 12GB VRAM, while 
the CPU was an Intel Core i5 12600K with 16GB RAM. The operating system used was 
Ubuntu 20.04.5, and the deep learning framework used was PyTorch 1.10.2 and Torchvision 
0.11.3. The version of Python used in this study was 3.6.13. 

The FER2013 dataset comes pre-partitioned into training, validation, and testing sets at an 
8-1-1 split ratio, which is publicly disclosed. Given that FER-Plus is a subsequent expansion 
of FER2013, its distribution adheres to the same 8-1-1 split. In contrast, for the CK+ and RAF-
DB datasets, we segment them into training, validation, and testing sets at a 7-1-2 ratio during 
our experiments. The validation set is used during the training for parameter tuning. After 
adjusting and refining the model's parameters, the testing set is used to evaluate the final results. 
The results from the test data set are used to compare and evaluate the proposed model with 
other related works. 

For each dataset used in the study, the proposed model mentioned above was trained using 
specific hyper-parameters. The training process was performed from scratch for a total of 300 
epochs. During each iteration, a batch of 64 samples was processed simultaneously. To 
initialize the weights of the model, random Gaussian variables were employed with zero mean 
and a standard deviation of 0.05 for linear layers. For the convolutional layers, we applied the 
Kaiming initialization method [31], which specifically designed to help propagate gradients 
effectively, leading to improved training convergence. During the training process, we 
employed the AdamW optimization algorithm. The learning rate for the AdamW optimizer 
was set to 0.001, striking a balance between fast convergence and avoiding overshooting the 
optimal solution. Furthermore, a learning rate scheduler in the form of ReduceLROnPlateau 
was implemented.  

4.3 Evaluation metrics 
The obtained experimental results will be evaluated using several parameters, including the 
following: 
• Model Parameters and Model size: Model parameters refers to the total number of 

learnable parameters, and it directly influences the model's complexity, memory usage, 
training time and inference time. On the other hand, the model size refers to the storage 
space required to store the model on disk. It is typically measured in megabytes (MB) and 
includes not only the parameters but also the model's architecture, configurations, and 
other associated metadata. The model size is an important consideration, especially in 
resource-constrained environments. 

• Overall classification accuracy: This is a straightforward measure of the classification 
problem that involves dividing the number of correct predictions by all predictions. It can 
be expressed mathematically as: 

            (11) 

• Confusion Matrix: is a tabular representation that summarizes the performance of a 
classification model. It is particularly useful when the dataset is imbalanced, where one 
class has significantly more samples than another. In such cases, accuracy alone can be 
misleading, and the confusion matrix provides a more detailed view of the classifier's 
performance. The confusion matrix allows us to compute various performance measures 
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that provide deeper insights into the classifier's effectiveness. These measures include 
precision, recall, and F1-score. 

5. Experiment Results and Discussions 

5.1 Overview of the experiment results 
Table 1 presents a comprehensive overview of the experimental results obtained from our 
proposed method. The table includes various performance metrics such as the number of 
model parameters in the 5th column, the model size in the 6th column, and the inference time 
calculated by second per image. The table also provides the overall classification accuracy on 
CK+, FER2013, FER-Plus, and RAF-DB datasets, respectively. As mentioned earlier, the 
FER2013 dataset is particularly more challenging than other FER datasets due to class 
imbalance, posing difficulties during training. Our proposed model achieved an accuracy rate 
of approximately 69.38% on the FER2013 test set. Furthermore, we achieved an accuracy of 
98.98% on the CK+ dataset, 79.36% on FER-Plus, and 80.75% on RAF-DB. These results 
demonstrate the effectiveness of our model across multiple datasets. One notable advantage of 
our model is its substantial reduction in parameter count, resulting in a memory footprint of 
only 0.32 MB. Additionally, our model exhibits faster inference times, achieving an 
impressive speed of up to 0.004 seconds per image. These factors contribute to the efficiency 
and practicality of our model for real-time facial expression recognition tasks. 

Table 1. Overview of experiment results 

 #Params. Size 
(Mb) 

Inference 
time 

(s/image) 

Overall Accuracy 

CK+ FER-
2013 

FER-
Plus 

RAF-
DB 

Replace all DSC* 
layers with Conv** in 
the proposed model 

321,816 1.4 0.005 97.6 68.73 79.24 79.55 

Our proposal 
FGW-FER 64,176 0.32 0.004 98.98 69.38 79.36 80.75 

* DSC: Depth-wise Separable Convolution; ** Conv: Traditional Convolution 

In addition, when we substitute all Depth-wise Separable Convolution layers with 
Traditional convolution layers in the proposal model, the outcomes presented in Table 1 
demonstrated a decline across all evaluation metrics. Despite the model's parameter count 
increasing by over 5 times, recognition accuracy witnessed a decline of approximately 0.5% 
to 1%. This serves as additional substantiation, endorsing our assumption that an all-out 
replacement of traditional convolutional layers with Depth-wise Separable Convolution in the 
proposed model is not advisable. Instead, the model synergistically amalgamates both types to 
harness the distinct advantages each offers. Depth-wise Separable Convolution layers 
significantly curtail parameter count while upholding diversity and coherence among the 
Traditional convolutional layers, allowing the proposed model to mitigate loss. 
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Fig. 11. Confusion matrices of our FGW-FER model on CK+, FER2013, FER-PLUS, and RAF-DB 

datasets. 

Furthermore, Fig. 11 includes the confusion matrices for the test set of the four datasets, 
providing valuable insights into the proposed method's recognition performance. The model 
showcased exceptional proficiency in recognizing the "happy" expression, achieving an 
accuracy rate of over 87% across all four datasets for this category. Specifically, in the CK+ 
dataset, the model achieved 100% accuracy for all expressions, except for the "happy" class. 
Moreover, in the FER2013 dataset, the "disgust" and "fear" classes also demonstrated high 
accuracy. However, in the FER-Plus and RAF-DB datasets, the limited availability of samples 
for the "disgust" and "fear" classes increased the likelihood of misclassification. 

5.2 Comparison results with related works 
In our experiments, we compared the performance of our proposed method with other related 
lightweight models from the literature. However, due to the unavailability of code for some of 
these models, we were unable to retrain them ourselves. Instead, we relied on the accuracy 
information provided in the literature to evaluate their performance on the test set. We 
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specifically selected these comparison models based on the criterion that their model sizes 
were published and relatively small, with fewer than 5 million parameters. 
It is important to note that for the sake of maintaining consistency, certain related works will 
not be included in the comparison with our proposed method. This is because these works 
were conducted in different experimental setups. For example, DenseNet-1 [32] is not 
considered due to its reported recognition accuracy on the validation set rather than the test 
set, and A-MobileNet [30] is not included as it was pretrained on the ImageNet [33] dataset. 

Table 2 to Table 5 provide valuable insights for analyzing and interpreting the 
effectiveness of our proposed method in comparison to existing methods on the four FER 
datasets. In short, our model demonstrates superior performance compared to many common 
lightweight networks, including MobileNet V1 [4], MobileNet V2 [36], MobileNet V3 [35], 
and SqueeezeNet [39]. It also showcases competitive performance compared to related 
lightweight models, making it an excellent choice for real-time expression recognition 
applications. 

Table 2. Performance comparison on the CK+ dataset 

# Ref. Method used Year #Params. Accuracy rate 
on CK+ 

1 [34] Based on MobileNetV2 
and Inception 2019 2,639,239 92.4 

2 [4] MobileNet v1 2017 3,213,575 95.0 
3 [35] MobileNet v3 2019 4,210,711 96.0 
4 [36] MobileNet v2 2018 2,232,263 98.0 
5 [37] Deep-Emotion* 2021 66,877 98.0 
6 [38] MBCC-CNN** 2021 4,384,175 98.48 

7 Our proposal 
FGW-FER 

 64,176 98.98 

*   Deep-Emotion: Attention mechanism is added through spatial transformer network 
** MBCC-CNN: multiple branch cross-connected convolutional neural network 

To delve into the details, the results presented in Table 2 indicate that our proposed model 
achieves the highest accuracy on the CK+ dataset compared to other works, while ranking 
third on the FER2013 dataset in Table 3, FER-Plus in Table 4, and RAF-DB dataset in Table 
5. However, what sets our model apart is its impressive performance despite having fewer 
parameters than the majority of recent related works. With only 64,176 parameters, our model 
is surpassed in parameter count by only two works: [28] with 54,000 parameters and [40] with 
58,423 parameters. However, our model achieves significantly higher accuracy than both of 
these works. While they report an average accuracy of 66.29% and 67% on the FER2013 
dataset respectively, our model achieves an impressive accuracy of 69.38%. Furthermore, 
compared to the top-1 recognition accuracy [38] in FER2013, FER-Plus, and RAF-DB, their 
models have approximately 70 times more parameters than ours. This significant reduction in 
model size is noteworthy. Another noteworthy work is Deep-Emotion [37], which has a 
relatively small model size similar to ours. It achieves better accuracy on the FER2013 dataset 
while slightly lower accuracy on the CK+ dataset compared to our work. 
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Table 3. Performance comparison on the FER2013 dataset 

# Ref. Method used Year #Params. Accuracy rate on 
FER2013 

1 [28] DSC + RE + SE* 2022 54,900 66.29 
2 [35] MobileNet v3  2019 4,210,711 66.15 
3 [36] MobileNet v2 2018 2,232,263 66.47 
4 [4] MobileNet v1 2017 3,213,575 67.08 
5 [40] MTCNN + RE + DSC** 2021 58,423 67.00 
6 [37] Deep-Emotion 2021 66,877 70.02 
7 [38] MBCC-CNN 2021 4,384,751 71.52 

8 Our proposal 
FGW-FER  64,176 69.38 

*   DSC: Depth-wise Separable Convolution, RE: Residual blocks, SE: Squeeze-and-Excitation Block 
** MTCNN: multi-task cascaded convolutional network 
 

Table 4. Performance comparison on the FER-PLUS dataset 

# Ref. Method used Year #Params. Accuracy rate on 
FER-Plus 

1 [35] MobileNet v3 2019 4,210,711 71.42 
2 [36] MobileNet v2 2018 2,232,263 79.26 
3 [39] SqueeezeNet 2016 740,000 80.13 
4 [4] MobileNet v1 2017 3,213,575 80.04 
5 [41] ShuffleNet v2 2018 1,260,000 80.44 
6 [38] MBCC-CNN* 2021 4,384,751 88.10 

7 Our proposal 
FGW-FER  64,176 80.36 

* MBCC-CNN: multiple branch cross-connected convolutional neural network 
 

Table 5. Performance comparison on the RAF-DB dataset 

# Ref. Method used Year #Params. Accuracy rate 
on RAF-DB 

1 [4] MobileNet V1 2017 3,213,575 79.92 
2 [36] MobileNet V2 2018 2,232,263 70.13 
3 [35] MobileNet V3 2019 4,210,711 78.6 
4 [27] LA-Net (70% Pruned) 2021 1,010,000 85.89 
5 [38] MBCC-CNN 2021 4,384,751 87.34 

6 Our proposal 
FGW-FER  64,176 80.75 

 

5.3 Attention Visualization 
Table 6 and Table 7 illustrate the attention maps depicting various emotions in FER2013. The 
tables consist of seven rows, with each row representing one of the seven expression categories. 
From top to bottom, the categories are anger, disgust, fear, happiness, sadness, surprise, and 
neutral. In Table 6, we have organized a set of five columns to showcase correctly labeled 
examples, where the first three columns display images of frontal faces, and the next two 
columns illustrate images of horizontally positioned faces. On the other hand, Table 7 
represents seven columns of images with incorrectly labeled emotions. 
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Table 6. Attention visualization of different expressions with true prediction on FER2013 dataset 
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Examining the first row of Table 6, labeled as "Anger," we observe that the attention maps 
primarily focus on the mouth and nose regions for the frontal faces. In the case of horizontally 
positioned images, the attention maps concentrate on the informative areas such as the mouth 
or eyes. Moving to the second row, labeled as "Disgust," we find that the nose plays a 
significant role in determining this expression. In the horizontally positioned images, the nose 
alone is insufficient to convey the emotion, resulting in the attention maps spreading across 
the nose, eyes, and mouth regions. In the third row, to recognize the "Fear" expression, the 
attention maps concentrate on a relatively large area of the face. This indicates that when 
expressing fear, multiple regions of the face undergo noticeable changes, including the eyes, 
nose, and mouth. The attention maps presented in the fourth row for the "Happiness" 
expression provide a surprising insight. Initially, we anticipated that the mouth region would 
be the most crucial area for conveying happiness. However, in most samples labeled as 
"Happiness," the attention maps actually appear in the nose region. This suggests that the nose 
area is crucial in distinguishing the "Happiness" label from others. This understanding 
becomes more evident when we analyze the "Surprise" label. For the "Surprise" expression, 
most samples exhibit an expanded mouth, while elongated mouths without expansion can be 
found in several samples labeled as "Happiness." Lastly, for the "Sadness" and "Neutral" labels, 
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the attention maps focus on both the mouth and nose regions. 
When analyzing images with mislabeled emotions in Table 7, it is evident that the 

corresponding attention maps often fail to accurately emphasize the key regions observed in 
correctly labeled images. Nevertheless, a subset of these mislabeled images raises concerns 
regarding the accuracy of their assigned labels. Notably, in row 1, column 4, the original label 
indicating "Anger" contradicts our prediction of "Happiness." Similarly, in row 1, column 6, 
the original "Anger" label conflicts with our prediction of "Surprise." Likewise, in row 3, 
column 4, the original "Fear" label is at odds with our prediction of "Happiness," and in row 
3, column 6, the original "Fear" label contrasts with our prediction of "Surprise." These 
instances underscore the inherent challenge in evaluating facial expressions within images, 
highlighting the propensity for confusion in both human and machine-based analyses. 

Table 7. Attention visualization of different expressions with false prediction on FER2013 dataset 

# Ground 
truth 

False Prediction 
1 2 3 4 5 6 7 
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6. Conclusion 

In the work, we presented a novel lightweight model architecture for Facial Expression 
Recognition (FER) task. The architecture integrates three essential factors: Depth-wise 
Separable Convolution, Residual Block, and Attention Modules. The objective of 
incorporating these factors is to achieve a balance between model size, inference speed, and 
accuracy in FER tasks. It opens up opportunities for efficient and effective deployment of real-
time FER applications in various devices with a limited memory. Comparative analysis with 
existing lightweight models discussed in the literature demonstrates the advantages of our 
proposed approach. Despite its reduced parameter count and faster inference speed, our model 
achieves accuracy levels that are on par with or comparable to other state-of-the-art lightweight 
models. Specifically, the proposed model attains the highest accuracy on the CK+ dataset 
compared to other studies, while ranking third on the FER2013, FER-Plus, and RAF-DB 
datasets. Additionally, when visualizing attention maps for different expressions, they reveal 
the potential for misinterpretations in both human-based and machine-based analyses. This 
indeed poses a significant challenge in solving the facial expression recognition problem.  

Moving forward, we plan to evaluate our approach on additional datasets, adapt it for video, 
and integrate it into web and mobile applications. Moreover, we intend to find solutions to 
develop more effective attention mechanisms on lightweight FER models. 
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